
ROBOTICS-
INSTITUTE

Carnegie Mellon University
The Robotics Institute-

TeehmcaL Report

Using Case-Based Reasoning
as a Reinforcement Learning framework
for Optimization with Changing Criteria

DTK QUAUTI mcPECTEB

Dajun Zeng Katia Sycara

CMU-RI-TR-95-13

5

The Robotics Institute
Carnegie Mellon University

Pittsburgh, Pennsylvania 15213

March, 1995

©1995 Carnegie Mellon University

Accesion For

NTIS CRA&I
DTIC TAB
Unannounced
Justification

By
Distribution/

Availability Codes

Dist

m
Avail and/or

Special

fThis research was partially supported by the Defense Advance Research Projects
Agency under contract #F30602-91-C-0016.

"ra^RroimcirsfÄfEM^T "A
Approved for public release;

Distribution Unlimited

Contents

1 Introduction 1

2 Repair-based Optimization and Reinforcement Learning 3
2.1 Job-Shop Scheduling 5

3 Overview of CABINS 6

4 Experimental Evaluation of Capturing Changing Prefer-
ences 7
4.1 Experimental Design 8

5 Conclusions 11

List of Figures

1 A repair-based Problem Solving Session 4

List of Tables

1 Notations for Different Objectives 9
2 Experimental Results: Quality Improvement when Prefer-

ences Change 10
3 Experimental Results for Problems with 5 resources and 20 jobs 11

Abstract

Practical optimization problems such as job-shop scheduling of-
ten involve optimization criteria that change over time. Repair-based
frameworks have been identified as flexible computational paradigms
for difficult combinatorial optimization problems. Since the control
problem of repair-based optimization is severe, Reinforcement Learn-
ing (RL) techniques can be potentially helpful. However, some of
the fundamental assumptions made by traditional RL algorithms are
not valid for repair-based optimization. Case-Based Reasoning (CBR)
compensates for some of the limitations of traditional RL approaches.
In this paper, we present a Case-Based Reasoning RL approach, im-
plemented in the CABINS system, for repair-based optimization. We
chose job-shop scheduling as the testbed for our approach . Our exper-
imental results show that CABlNS is able to effectively solve problems
with changing optimization criteria which are not known to the system
and only exist implicitly in a extensional manner in the case base.

11

1 Introduction
Consider an AI program (an agent) that must learn to solve real-world prob-
lems, assuming that no complete domain knowledge is available. For each
problem it's trying to solve, it needs to collect information about the world
(either from its sensors or from interaction with its user) and must choose an
action to take. After executing the chosen action, the agent receives a signal
(a reinforcement signal) from the world that indicates how well the agent is
performing. The agent evaluates this reinforcement signal and decides either
to go to another loop of sense-select-evaluate, or to terminate the problem
solving process.

This learning scenario is quite different from standard concept learning,
in which a teacher presents the learner with a set of input/output pairs. In
the reinforcement learning (RL) scenario, the learner is not told anything
about which action to take, but instead must discover which action yields
the highest reward by trying different actions. Typically, actions may affect
not only the immediate reward, but also the next situation, and through that
all subsequent rewards [13].

In this paper, we present a learning agent that solves one of the "hardest"
[3] combinatorial optimization problems, i.e., job-shop scheduling problems.
Our approach, implemented in the CAB[NS system, is shown experimentally
to be able to learn scheduling problem solving knowledge even when the
scheduling criteria change over time. This capability is very important for
the following reasons. First, traditional search methods, both Operations
Research-based and Al-based, that are used in combinatorial optimization,
need explicit representation of the optimization objectives, that must be de-
fined in advance of problem solving [11]. In many practical problems, such
as scheduling and design, optimization criteria often involve context- and
user-dependent tradeoffs which are impossible to represent as an explicit and
static optimization function. Second, and equally important consideration is
the fact that the problem solving environment and optimization criteria could
be changing over time. Therefore, approaches that capture optimization cri-
teria statically or require expensive knowledge-base updating are extremely
limiting. On the other hand, approaches that utilize machine learning tech-
niques to adapt their behavior to the changing objective criteria and problem
solving context are much more promising.

Recently, repair-based optimization has been identified as a very flexi-
ble framework for solving optimization problems [6]. Reinforcement learning
(RL) is particularly relevant and potentially useful within a repair-based

framework. Some basic assumptions that typical reinforcement learning
methods [14, 13] make about the problem domain, however, are violated
for solving complex optimization tasks. (1) The reinforcement signal is typi-
cally assumed to be a scalar, which doesn't hold for real-world optimization
tasks, where evaluation criteria are situation-dependent and changing. (2)
RL methods assume that there is an explicit criterion to tell problem solver
when the goal has been reaches. However, for optimization tasks, except for
toy problems, it is not possible to verify the optimality of a certain solution
short of using exhaustive search, which is computationally prohibitive. To
address these fundamental issues, instead of using classic reinforcement learn-
ing techniques, such as Q-learning [19], or connectionist-based approaches [5],
we apply Case-Based Reasoning (CBR) [4] as the primary tool to (1) repre-
sent the state space implicitly and approximately in a case-base, (2) generate
expected rewards associated with sample points in the state space based on
previous problem solving experiences and knowledge about optimization cri-
teria, (in some sense, an approximation of Q used in Q-learning is estimated
through CBR), (3) choose the appropriate action at each decision-making
point to maximize the expected reward, and (4) utilize failure information
as a helpful index to explore temporal credit assignment information. Our
experimental results show that CBR could be effectively incorporated within
a RL context. Due to the approximate nature of CBR, when CBR-based
selection and evaluation are applied in decision-making, we lose many nice
properties which Temporal Differences-based approach [14] can provide, such
as asymptotic convergence. We believe, however, that our CBR-based ap-
proach has good potential for (1) handling much bigger search spaces since it
doesn't require an explicit representation of problem space, and (2) attacking
task domains with complicated and dynamically changing decision-making
criteria and constraints.

The work reported here extends previous work on the CÄBlNS system [17,
15, 20, 16, 9]. It tests the hypothesis that our CBR-based incremental repair
methodology shows good potential within a reinforcement learning context
to solve problems with optimization criteria that change over time. Our
investigation was conducted in the domain of job shop schedule optimization
and the experimental results, shown in section 4 confirmed this hypothesis.

2 Repair-based Optimization and Reinforce-
ment Learning

A general optimization task can be described as follows:

ma,xf(xi,X2,...,xn)

subject to: Cj(xi,x2,.. .,x„) > 0, j = 1,2,.. .,m
where /(.): objective function

X{, i = 1,2,..., n: decision variables
Cj{.): constraints over the decision variables.

Two categories of problem solving strategies are commonly used to calcu-
late the optimal solution (x"i, x2,..., xn) which maximizes /(.). One of them
is the constructive approach, which tries to find the optimal solution from
scratch. At each problem solving step, only partial solutions are generated
and/or assembled. The problem solving stops once a complete solution is
attained, which is presumably optimal or satisficing. The other approach,
called repair-based or revision-based, doesn't solve the optimization problem
directly from scratch, but instead first finds an easy-to-compute, complete,
and most likely suboptimal solution that is to be incrementally repaired
to meet optimization objectives. The advantages of repair-based approach
for optimization problems for which there is no known efficient constructive
algorithm has been recently realized by both Operations Research and AI
communities [6, 10].

Within a repair-based optimization framework, the search space consists
of all the possible solutions. The components of a repair-based approach
are (1) transform operators used for generating a new complete solution
given an old one, and (2) control knowledge for choosing the right transform
operator so that a sequence of state transitions will lead to a global optimum.
Typically, a certain transform operator focuses on one particular aspect of the
problem and tries to improve it. Therefore transform operators are inherently

of local nature.
Figure 1 shows a typical problem solving session using the repair-based

perspective. Different search paradigms have been proposed to efficiently
explore the search space, such as hill-climbing and some variation of hill-
climbing including Simulated Annealing and Tabu search aimed at avoiding
local minima. Hill-climbing-like searches might be very useful in situations
where (1) no other available domain knowledge can be exploited except for
the knowledge of objective criteria and transform operators, or (2) we want

TrOptl

(suboptimal solution j

TrOpt2

TrOpÜ
TrOptl t ;—;———v—<i

[suboptimal solution J ^^

suboptimal solution J—[suboptimal solution j

suboptimal solution j- TrOptl

(optimal solution j

(suboptimal solution j (suboptimal solution J

(suboptimal solution j

TrOptn: Transforming Operator n

Figure 1: A repair-based Problem Solving Session

to explore the search space and generate examples for learning. However,
hill-climbing approaches are in general very computation-intensive and not
very practical to use in real-world applications. Furthermore, in real world
application, both the objective function and the constraints might change
over time. A more flexible and powerful framework for solving complex
optimization problems is needed.

It is straightforward to see the correspondence between the repair-based
problem solving paradigm and decision making model commonly used in the
RL literature. Let S be the set of states and A be the finite set of actions
available to the learning agent for optimization tasks. Each possible feasi-
ble solution (which is not necessarily optimal) corresponds to a state. The
action set is comprised of all possible transform operators. At each time
step t, the agent observes the system's current state st € S (a suboptimal
solution), chooses an action at € A (a transform operator) and executes this
action. As a result, the agent receives a payoff R(st,at)

1 and the system
makes a transition to a new state st+i. Unlike in traditional RL problems,
the state transition is typically deterministic for repair-based optimization.

1For optimization tasks, R(st,at) is equal to 0 unless f(st) reaches a maximum or is
deemed to be satisfactory. A positive reward is assigned when a maximum or a satisfying

solution is reached.

Noticing the similarity between this re-formulated repair-based optimization
problem and traditional reinforcement learning decision-making model, one
might conclude that reinforcement learning methods can be easily adapted
to repair-based optimization problem solving. Unfortunately, this is not easy
for the following reasons: (1) S for optimization tasks is potentially very
large, and, more often than not, infinite, which makes it impossible to ex-
plicitly represent state space, (2) stopping criterion is not known for optimiza-
tion problems, and (3) temporal credit assignment problems for optimization
tasks tend to be very difficult.

2.1 Job-Shop Scheduling

Scheduling deals with allocation of a limited set of resources to a number of
activities. One of the most difficult scheduling problem classes is job shop
scheduling [3]. In job-shop scheduling, each task (interchangeably called an
order or a job) consists of a set of activities to be scheduled according to
a given partial ordering which reflects precedence constraints. Another type
of constraints, capacity constraints, restricts the number of activities that
can be assigned to a resource during overlapping time intervals. The goal of
a scheduling system is to optimize the resulting schedule based on a set of
objectives, such as minimize weighted tardiness, minimize inventory cost of
Work-In-Process (WIP), etc. The scheduling problem is difficult to solve for
a number of reasons. First, it is an NP-complete problem [3, 10]. Second,
scheduling objectives are typically not well-defined and maybe changing over
time. For example, the user might want to minimize both weighted tardiness
and work-in-process to meet due dates and to diminish the inventory cost.
However, what type of combination of objectives will perfectly reflect the
user's preferences? Does the objective in the form of Weighted Tardiness +
W.I.P. make more sense than Weighted Tardiness x W.I.P. or the opposite?

In this paper, we focus on solving schedule optimization problems where
optimization criteria change over time 2 For experimental comparison of our
approach with other scheduling methods, interested readers are referred to
[16, 9]. The basic assumption we made about changing optimization criteria
is that (1) the changes occur smoothly, (e.g., we are not expecting that the
user will rapidly shift from maximizing a certain objective to minimizing

2The capabilities of Q^BlNS are more extensive than what we described here (e.g.,
Q4BlNS has the capability of acquiring user preferences). However, in this paper, we
restrict our attention on the role of CBR as a complementary framework for reinforcement
learning.

it), and (2) the problem solving context will not change drastically over
the problem solving horizon. We believe that reasoning based on a rolling
time window of data, i.e., keeping an approximately constant number of the
most recent cases is an effective way of reflecting user smoothly changing
preferences [2, 7]. Fore more detailed discussion, see [18].

3 Overview of CAB[NS

CAB[NS uses a repair-based approach for schedule optimization, i.e., a com-
plete but suboptimal schedule is generated by OR-based dispatch heuristics
or a constraint-based scheduler and then incrementally revised using revision
actions, called repair tactics. In each revision iteration, CABlNS tries to re-
pair a particular activity, called a focaLactivity. Repair means moving the
activity to a different place in the schedule. In general, this will result in con-
straint violations that in turn must be resolved. Due to the tight constraints
of job shop scheduling, these constraint violations can ripple through the
whole schedule. To find an activity to repair, CABINS identifies jobs, called
focaLjobs, that must be repaired in the initial sub-optimal schedule. The
activities of a focaLjob are repaired in sequence starting with the earliest in
the current schedule.

Case Representation A case in Q4B[NS describes the application of a
particular repair action to a focaLactivity. The contents of a case include:
(1) global features (e.g., Weighted Tardiness, Resource Utilization Average)
which give an abstract characterization of potential repair flexibility or the
lack thereof for the whole schedule, (2) local features associated with the
focaLactivity which potentially are predictive of the effectiveness of applying
a particular repair tactic, and (3) repair history. For details, refer to [9].

In order to bound the ripple effects of repair, a repair tactic is used
only within a bounded time horizon, the time interval between the end of
the activity preceding the focal_activity in the same focaLjob and the end
of the focaLactivity. CAB[NS currently has 11 repair actions. Examples
of repair tactics are: (l)leftshift: try to move the focaLactivity on the
same resource as much to the left on the time-line as possible within the
repair time horizon, so as to minimize the amount of capacity over-allocation
created by the move. (2)swap: swap the focaLactivity with the activity
on the same resource within the repair time horizon which causes the least
amount of precedence constraint violations.The repair history represents the
sequence of applications of successive repair actions, the repair outcome and

the effects. Repair effect values describe the impact of the application of a
repair action on scheduling objectives (e.g., Weighted Tardiness, Work-In-
Process Inventory (W.I.P.)).

Case Retrieval and Re-use CABJNS repairs the schedules by: (1) rec-
ognizing schedule sub-optimalities, e.g., finding out all the tardy jobs, (2)
focusing on a focaLactivity to be repaired in each repair cycle, (3) invoking
CBR with global and local features as indices to decide the most appropriate
repair action to be used for each focaLactivity. As a case retrieval mecha-
nism, CABINS uses a variation of k-Nearest Neighbor method (k-NN) [1]. For
the detailed formula for similarity calculation, see [9].

Since the number of possible schedules for job-shop scheduling is poten-
tially infinite, explicit representation of state space is impossible. In CABlNS,
the case-base reflects samples of state transition sequences that have been
tried out. In addition, each state is represented in terms of abstract features
(e.g., global, local features and repair history). This abstracted "represen-
tation" of a state, potentially corresponds to multiple schedule instances
(multiple states in the repair-based solution space). During problem solving,
CABlNS uses partial matching to match a given schedule instance (a state) to
an appropriate "abstracted" state in order to extract the appropriate control
action and evaluates the applicability of this action in the current problem
solving situation.

4 Experimental Evaluation of Capturing Chang-
ing Preferences

Extensive experiments have been conducted with CAB[NS [8, 20, 16]. It has
been experimentally shown that CAB[NS (1) is capable of acquiring diverse
static optimization preferences and re-using them to guide solution quality
improvement, (2) is robust in the sense that it improves solution quality
independent of the method of initial solution generation, and (3) produces
high quality solutions. In this paper, we report preliminary results from a
set of experiments aimed at demonstrating that CBR-based reinforcement
learning can be effective in solving optimization problems with changing op-
timization criteria. In order to evaluate the experimental results consistently,
we built a rule-based reasoner (RBR) with known optimization function that
goes through a hill-climbing-based trial-and-error repair process to optimize
a schedule. For each repair, RBR calculates repair effects and evaluates the
corresponding repair outcomes were evaluated based on the optimization cri-

teria. RBR generates a case base for CABlNS. Note that the optimization
criteria, though known to RBR, are not known to CABlNS and are only im-
plicitly and extensionally reflected in the case-base. By incorporating explicit
objectives into the RBR so they could be reflected in the case base we got
an experimental baseline against which to evaluate the schedules generated
by CABINS [9].

We evaluated our approach on a suite of job shop scheduling problems
where parameters, such as number of bottleneck resources (1 bottleneck and
2 bottlenecks), range of the variations of due dates and activity durations
(static, moderate, dynamic) were varied to cover a range of job shop schedul-
ing problem instances.

Six groups of problems were generated with random assignment of re-
source and execution duration for each activity. For each group, 55 schedul-
ing problem instances were generated randomly, resulting in a total of
55 x 6 = 330 problem instances. Each problem has 10 jobs and 5 ma-
chines. There are 5 activities for each job. Each job has a linear routing.
Each activity can be executed on two substitutable machines. Bottleneck
machines, however, have no substitutes. Although the size of these problems
may seem small to researchers outside the scheduling community, job-shop
scheduling problems of this size have been recognized as very hard problems
by AI and OR researchers [12, 10] and there are no known optimal solutions
yet for these problems due to the large number of constraints,

A cross-validation method was used.to evaluate the performance of
CABINS. Each problem set in each group was divided in half. The train-
ing samples were repaired by RBR to gather cases. These cases were then
used for case-based repair of the validation problems. We repeated the above
process by interchanging the training and validation experimental sets. Re-
ported results are for the validation problem sets.

4.1 Experimental Design

For each group of problem instances, the following steps were followed. First,
5 problems were randomly chosen out of the 55. These 5 problems were
repaired by RBR using Weighted Tardiness as the optimization criterion. 3

The main reason for the creation of this initial case-base is to keep the size
of the time window of cases approximately fixed. If we didn't construct the

3Using Weighted Tardiness as the evaluation criterion was an arbitrary decision. Any
objective satisfying the assumption of smooth preference changes would be acceptable.

initial case-base, then the number of the cases used by CAB]NS to repair the
first subset of validation problems would be roughly only half the number of
the cases used by CAB]NS for other subsets of validation problem instances.

Second, the remaining 50 problems were divided into two subsets: one
subset was the training sample which would be repaired by RBR to gather
cases, the other subset served as the validation problem set to be repaired by
CABINS. In order to simulate the dynamic preference changes, we randomly
divided further the problem instances in both subsets into 5 categories, each
of which contained 5 individual problem instances and was assigned to a
different objective function respectively. Table 1 succinctly shows the exper-

imental design.

OBJi Weighted Tardiness

OBJ2
0.8 x Weighted Tardiness + 0.2 x W.I.P.

OBJ3 0.5 x Weighted Tardiness + 0.5 x W.I.P.

OBJ4 0.2 x Weighted Tardiness + 0.8 x W.I.P.

OBJ5 W.I.P.

Table 1: Notations for Different Objectives

Assigning OBJi to the subsets of scheduling problem instances in a cer-
tain order can be viewed as a reasonable simulation of temporal transition
of changing optimization criteria. The specific assignment of the objective
functions (OBJjJ = 1,..., 5) to the subsets of problem instances is shown
as follows: Let ProblemSet) denote a subset of problem instances, where i
designates either repair by RBR to gather cases (when i = RBR) or repair
by CABINS (when i = CAB). The subscript j takes the value [1,2,3,4,5]
to refer to one of the five subsets of the problems (each of them contains 5
problem instances), respectively. The objective function for evaluating the
solution quality for the problems in ProblemSet) is OBJj, where j = 1... 5.
Although we, the experiment designers, knew the objective function for every
problem set and RBR also knew it. CABINS didn't know the objective explic-
itly but only implicitly through its case base. To simplify the notation, we
use ProbleSet$BR to denote the 5 problem instances we initially chose to be
repaired by RBR to collect the initial case-base. The overall experimentation

process was as follows:

1. Solve the problems in ProblemSet$BR using RBR to collect the cases. These cases
will serve as the set-up problem solving experience. The objective used by RBR is
OBJi. We denote the cases gathered in this step by Cases0.

9

2. Solve the problems in ProblemSetBBR using RBR to accumulate cases based on
the criterion OBJ\. Casesi denotes the cases RBR collected in this step.

3. Solve the problems in ProblemSetiAB through Q\B]NS. The case-base used in this
step consists of the cases included in Caseso and Casesi.

4. Collect the cases using RBR through solving the problems in ProblemSetRBR based
on the objective function OBJ2. The cases are denoted by Cases2.

5. Solve the problems in ProblemSet2AB using Q\B]NS. The cases from Casesi and
Cases2 are utilized.

6. Solve ProblemSetj,j = 3,4,5 in the same manner.

In general, the experiments followed the pattern: (1) accumulate the cases
through RBR based on the problem solving experience on ProblemSetfBR.
The cases gathered are denoted by Casesi, and (2) solve ProblemSetfAB

using CABINS based on the cases from Casesi and Cases i-i.
The experimental results presented in Table 2 show the overall average

of CAB[NS performance across all 6 groups of problems. 4

Objective Weight on
Wei. Tar.

Weight on
W.I.P.

Wei. Tar.
improvement

W.I.P
improvement

OBJi 1.0 0.0 20% -10%
OBJ2 0.8 0.2 18% 2%
OBJ3 0.5 0.5 15% 7%
OBJ4 0.2 0.8 10% 8%
OBJ5 0.0 1.0 8% 10%

Table 2: Experimental Results:
Change

Quality Improvement when Preferences

From the results, we observe that CABINS is capable of automatically and
dynamically adjusting its control knowledge to be biased according to the
optimization criteria reflected implicitly in the case-base. When the more
important criterion was minimizing Weighted Tardiness, CAB[NS faithfully
echoed that change in terms of focusing more efforts on Weighted Tardiness
rather than on W.I.P. The same thing happened when the criterion changed
to give more weight to reducing W.I.P.

4
CABINS is implemented in C and all the experiments are conducted on a DEC5000

UNIX workstation. Since it is not possible to determine in general the optimality of a
certain solution, CABlNS terminates problem solving when a pre-set number of repairs
have been tried.

10

To test the scalability of our approach we conducted similar experiments
on problems with 5 resource and 20 jobs (See Table 3). The pattern of results
was the same as in Table 2.

Objective Weight on
Wei. Tar.

Weight on
W.I.P.

Wei. Tar.
improvement

W.I.P
improvement

OBJ! 1.0 0.0 26% 5%

OBJ2 0.8 0.2 23% 7%

OBJ3 0.5 0.5 22% 9%

OBJ4 0.2 0.8 21% 9%

OBh 0.0 1.0 16% 12%

Table 3: Experimental Results for Problems with 5 resources and 20 jobs

5 Conclusions
In this paper, we advocated a Reinforcement Learning framework to learn
control knowledge for iterative repair-based optimization of job-shop schedul-
ing problems with changing optimization criteria. We presented the funda-
mental difficulties that traditional RL algorithms will run into in guiding
repair-based optimization and proposed CBR techniques to address these
problems. Our experimental results showed the potential of the approach to
find sequences of appropriate control actions that effectively guided schedule
optimization depending on the particular optimization criterion. We believe
that the general framework advocated here could also be applied to other
ill-structured domains. Current work focuses on investigating the theoret-
ical modeling and algorithmic analysis of capturing changing optimization
criteria, and analyzing quantitatively the importance of the smoothness as-
sumption of preference changing.

11

References

[1] Belur V. Dasarathy, editor. Nearest Neighbor (NN) Norms: NN Pattern
Classification Techniques. IEEE Computer Society Press, Los Alamos,
CA, 1990.

[2] Lisa Dent, Jesus Boticario, John McDermott, Tom Mitchell, and David
Zabowski. A personal learning apprentice. In Proceedings of the Tenth
National Conference on Artificial Intelligence. AAAI, 1992.

[3] Simon French. Sequencing and Scheduling: An Introduction to the Math-
ematics of the Job-Shop. Ellis Horwood, London, 1982.

[4] J. Kolodner. Case-Based Reasoning. Morgan Kaufmann Publishers,
Inc., 1994.

[5] Long-Ji Lin. Self-improving reactive agents based on reinforcement
learning, planning and teaching. Machine Learning, 8:293-321, 1992.

[6] B. Daun M. Zweben, E. Davis and M. Deale. Rescheduling with iterative
repair. In Proceedings of AAAI-92 workshop on Production Planning,
Scheduling and control, San Jose, CA., 1992. AAAI.

[7] Tom Mitchell, Rich Caruana, Dayne Freitag, John McDermott, and
David Zabowski. Experience with a learning personal assistant. Com-
munications of the ACM, 37(7), July 1994.

[8] Kazuo Miyashita and Katia Sycara. Improving schedule quality through
case-based reasoning. In Proceedings of AAAI-93 Workshop on Case-
Based Reasoning, pages 101-110, Washington, DC, 1993. AAAI.

[9] Kazuo Miyashita and Katia Sycara. Cabins: A framework of knowledge
acquisition and iterative revision for schedule improvement and reactive
repair. Artificial Intelligence, To appear, 1995.

[10] Thomas E. Morton and David W. Pentico. Heuristic Scheduling Sys-
tems: With Application to Production Systems and Product Manage-
ment. John Wiley and Sons Inc., New York, N.Y., 1993.

[11] C.R. Reeves, editor. Modern Heuristic Techniques for Combinatorial
Problems. Halsted Press, New York, 1993.

12

[12] Norman Sadeh. Look-Ahead Techniques for Micro-Opportunistic Job
Shop Scheduling. PhD thesis, School of Computer Science, Carnegie
Mellon University, 1991.

[13] Satinder Pal Singh. Tansfer of learning by composing solutions of ele-
mental sequential tasks. Machine Learning, 8:323-339, 1992.

[14] R. S. Sutton. Learning to predict by the methods of temporal differences.
Machine Learning, 3:9-44, 1988.

[15] Katia Sycara and Kazuo Miyashita. Adaptive schedule repair. In
E. Szelke and R. Kerr, editors, Knowledge Based Reactive Scheduling,
pages 107-124. North Holland, Amsterdam, Holland, 1994.

[16] Katia Sycara and Kazuo Miyashita. Case-based acquisition of user pref-
erences for solution improvement in ill-structured domains. In Proceed-
ings of AAAI-94, Seattle, Washington, August 1994. AAAI.

[17] Katia Sycara and Kazuo Miyashita. Learning control knowledge through
case-based acquisition of user optimization preferences in ill-structured
domain. In G. Tecuci and Y. Kodratoff, editors, Machine Learning and
Knowledge Acquisition: Integrated Approaches. Morgan Kaufmann, San
Mateo, CA, 1994.

[18] Katia Sycara, Dajun Zeng, and Kazuo Miyashita. Using case-based rea-
soning to acquire user scheduling preferences that change over time. In
The Proceedings of the Eleventh IEEE Conference on Artificial Intelli-
gence Applications (CAIA '95), Los Angeles, February 1995. IEEE.

[19] C.J.C.H. Watkins. Learning from Delayed Rewards. PhD thesis, Uni-
versity of Cambridge, England, 1989.

[20] Dajun Zeng. Combined machine learning techniques in predictive and
reactive scheduling. Graduate School of Industrial Administration, sum-
mer paper, Carnegie Mellon University, 1993.

13

